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Abstract 

Symmetry determination of three-dimensional 
(usual) crystals, four-dimensional (one-dimensionally 
incommensurate) crystals and five- and six-dimen- 
sional crystals (quasicrystals) by convergent-beam 
electron diffraction is described and demonstrated 
using real materials. Crystal structure refinement 
based on the dynamical theory of electron diffraction 
is described for the low-temperture phase of SrTiO3. 

1. Introduction 

Recent crystallographic studies by convergent-beam 
electron diffraction (CBED) originated with 
Goodman & Lehmpfuhl (1965), although earlier 
work by Kossel & M611enstedt (1939) was done 
about five decades ago. They obtained CBED pat- 
terns by converging a conical electron beam of an 
angle of more than 10 -3 rad on a small area of a 
specimen ( - 3 0 0 / ~  ~ ) ,  which had a uniform thick- 
ness and no bending. Instead of the usual diffraction 
spots, diffraction disks are produced. The diffracted 
intensity in a disk can be compared with that calcu- 
lated on the basis of the dynamical theory of electron 
diffraction. The method corresponding to CBED in 
the field of light optics is the conoscope method. 
Using a conoscope, we can identify a crystal as 
isotropic, uniaxial or biaxial and determine the optic 
axis and the signs of birefringence. When CBED, a 
conoscope method using an electron beam, is uti- 
lized, more basic properties of a crystal - the crystal 
point groups and space groups - can be determined. 

Point- and space-group determinations have pre- 
viously been carried out by X-ray diffraction. This 
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convergent-beam electron diffraction technique for many 
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quality data and pioneered many innovative techniques. His 
two volumes of collected CBED patterns (with M. Terauchi 
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method, to which the kinematical diffraction theory 
is applicable, cannot determine whether a crystal is 
polar or non-polar unless anomalous dispersion is 
utilized. As a result, the X-ray diffraction method 
can only identify 11 Laue groups among 32 point 
groups. CBED, based fully upon dynamical diffrac- 
tion, can distinguish polar crystals from nonpolar 
crystals, thus allowing the unique identification of all 
the point groups by inspection of the symmetries 
appearing in CBED disks. For the theory of 
point-group determination, see Goodman (1975), 
Tinnappel (1975), Buxton, Eades, Steeds & Rackham 
(1976), Tanaka, Saito & Sekii (1983) and Eades 
(1988a). 

Furthermore, CBED enables us to identify the 
presence of 21 screw axes and glide planes through a 
conspicuous dynamical diffraction effect. When a 
crystal has these axes or planes, special extinction 
lines appear in kinematically forbidden reflections, 
the lines being called dynamical extinction lines or 
Gj~nnes-Moodie (G-M) lines. By examination of 
whether G - M  lines are formed or not in kine- 
matically forbidden reflections, most space groups 
can be identified (Gj~nnes & Moodie, 1965; Tanaka, 
Sekii & Nagasawa, 1983; Eades, 1988b). Therefore, 
CBED is much superior to the X-ray method in 
determining crystal point groups and space groups. 

The repetition of a unit cell, the translational 
symmetry, is a characteristic feature of crystals. An 
exception - incommensurate structure - appears in a 
crystal over a certain temperature range. The period 
of this structure does not coincide rationally with 
that of the protophase. The structure, however, 
recovers lattice periodicity in a space higher than 
three dimensions. The one-dimensionally incommen- 
surate structure is described by a three-dimensional 
section of a crystal in four-dimensional space. The 
first study of an incommensurate structure was per- 
formed by Steeds et al. (1985) on NiGe~_xPx. Two 
examples of studies were carried out on Sr2Nb207 
and Mo8023 by Tanaka, Terauchi & Kaneyama 
(1988); however, four-dimensional analysis of the 
CBED patterns obtained from incommensurately 
modulated crystals was not carried out in those 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 



262 CONVERGENT-BEAM ELECTRON DIFFRACTION 

studies. Recently, the point- and space-group- 
determination method for these crystals has been 
established by Terauchi & Tanaka (1993) and 
Terauchi, Takahashi & Tanaka (1994). 

The discovery of an aluminium-manganese alloy 
(Shechtman, Blech, Gratias & Cahn, 1984) that gives 
sharp diffraction spots with an icosahedral symmetry 
has had a great impact on crystallography and solid- 
state physics. It has revealed the existence of a new 
structural order (quasicrystal). The quasicrystal is 
defined to have quasiperiodic long-range structural 
order with a noncrystallographic point group and to 
have a self-similarity transformation. The discovery 
of quasicrystals has accelerated the theoretical 
development of crystallography in high-dimensional 
spaces. Icosahedral quasicrystals are regarded as six- 
dimensional crystals; decagonal ones as five- 
dimensional crystals. CBED is definitely the best 
method to investigate the symmetry of this new class 
of structural order (Tanaka, Terauchi, Hiraga & 
Hirabayashi, 1985; Bendersky & Kaufman, 1986; 
Tanaka, Terauchi, Hiraga & Hirabayashi, 1987). 

CBED is now entering a stage of quantitative 
studies. Crystal structure analysis or the determina- 
tion of atom positions using CBED patterns was 
carried out first for AuGeAs by Vincent, Bird & 
Steeds (1984) and later for metastable AI-Ge by 
Vincent & Exelby (1990). They applied a quasi- 
kinematical theory to the fitting between experi- 
mental and calculated intensities. The first 
determination of atom positions using the dynamical 
theory was performed by Tanaka & Tsuda (1990, 
1991) for the low-temperature phase of SrTiO3. This 
work proved that the CBED method enables struc- 
ture refinement based on the dynamical diffraction 
theory. Bird & Saunders (1992a,b) intended to 
develop an ab initio structure-determination method 
using the dynamical diffraction theory. They stated 
that the method is feasible on the basis of a test on 
GaP. Recent publications concerning crystal struc- 
ture analysis are referred to in their papers. 

In the present paper, we first describe the symme- 
try determination of three-dimensional (usual) crys- 
tals, then that of four-dimensional (incommensurate) 
crystals and of five- and six-dimensional crystals 

t f f / / / ~  r f / f J f / / / f f f  

i 

\ 2 '  

Fig. 1. Four symmetry elements m', i, 2' and 74 of an infinitely 
extended parallel-sided specimen. 

Table 1. Two- and three-dimensional symmetry 
elements of an infinitely extended parallel-sided 

specimen 

Symbols in parentheses show CBED symmetries appearing in 
dark-field disks. 

Two-dimensional 
symmetry elements Three-dimensional symmetry elements 

1 m' (1 R) 
2 i (2 R) 
3 2' (rn2, m R) 
4 4 (4R) 
6 
m 

(quasicrystals), and finally crystal structure refine- 
ment. We omit the other important application of 
CBED, the identification of lattice defects. Readers 
who have an interest in this topic may refer to a 
review paper by Tanaka, Terauchi & Kaneyama 
(1991). In addition, we must refer to a chapter of a 
book on CBED by Eades (1992), which explains 
experimental techniques, symmetry determinations 
etc., and to a timely book on CBED written by 
Spence & Zuo (1992), which deals with all matters 
concerning the CBED method and its applications to 
date. 

2. Symmetry determination of three-dimensional 
crystals 

2.1. Point-group determination 

2.1.1. Symmetry elements of a spec#nen and dif- 
fraction groups. The point-group-determination 
method given by Buxton et al. (1976) is described 
with the aid of the description by Tanaka, Saito & 
Sekii (1983). They considered a perfect crystalline 
specimen that is parallel sided and infinite in two 
dimensions. The symmetry elements of the specimen 
form 'diffraction groups', which are isomorphic to 
the point groups of diperiodic plane figures and 
Shubnikov groups of colored plane figures. The dif- 
fraction groups of a specimen are determined from 
the symmetries of CBED patterns taken at various 
orientations of the specimen. The crystal point group 
of the specimen is identified by referring to a table 
that gives the relation between diffraction groups 
and crystal point groups. 

A specimen that is parallel sided and is infinitely 
extended in the x and y directions has ten symmetry 
elements. The symmetry elements consist of six two- 
dimensional symmetry elements and four three- 
dimensional ones. The operation of the former 
elements transforms an arbitrary coordinate (x, y, z) 
into (x', y', z), z remaining the same. The operation 
of the latter transforms a coordinate (x, y, z) into (x', 
y', z'), where z ' ~  z. A vertical mirror plane m and 
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Table 2. Symmetry elements o f an  infinitely extended parallel-sided specimen and diffraction groups 
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1 2 3 4 6 m 2rn(m) 3rn 4m(m) 6m(m) 
1 1 2 3 4 6 m 2m(m) 3m 4m(m) 6m(m) 
(rn')lR 1R 21R 31R 41R 61R mlR 2m(m)lR 3rnlR 4m(m)lR 6m(m)lR 
(i)2R 2R (21R) 6R (41R) (61n) 2Rm(mn) [2m(rn)lR] 6Rrn(mR)  [4m(rn)lR] [6rn(rn)lR] 

[2Rrn(mn)] [2re(re)in)] (3mln) 
(2')mR mR 2rnR(mR) 3mR 4mR(mR) 6mR(mR) (mlR) [4R(m)rnR] [6Rrn(rnR)] [4rn(m)lR] [6Bin(mR)] 
(~,) 4R 4R (41R) 4nm(rnn) [4Rm(rnR)] [4m(m)lR] 

10 
10 
4 

5 
2 

1 R - 2  n = 2 , 2 R ' 2 R  = 1, m R . 2  n = m,  4 R ' 2 R  = 4 , 1  R - m R  = m ' m R ,  1 R - 4 R  = 4 " I R ,  m R ' 4 R  = m . 4  R. 

one-, two-, three-, four- and sixfold rotation axes 
that are parallel to the surface normal z are the 
two-dimensional symmetry elements. The three- 
dimensional symmetry elements consist of a horizon- 
tal mirror plane m', an inversion center i, a horizon- 
tal twofold rotation axis 2' and a fourfold rotary 
inversion 74 whose axis is parallel to the surface 
normal as shown in Fig. 1. Table l lists these sym- 
metry elements. Symbols in parentheses express 
symmetries of CBED patterns expected from three- 
dimensional symmetry elements. 

The diffraction groups are constructed by combin- 
ing these symmetry elements (Table 2). Two-dimen- 
sional symmetry elements and their combinations are 
given in the first row of the table. The third sym- 
metry m in parentheses is introduced automatically 
when the first two symmetry elements are combined. 
Three-dimensional symmetry elements are given in 
the first column. The equations given below the table 
show that any additional three-dimensional symme- 
tries do not appear by the combination of two 
symmetry elements in the first column. As a result, 
31 diffraction groups are produced by combination 
of the elements in the first column with those in the 
first row. Diffraction groups in parentheses have 
already appeared somewhere. In row 5, two diffrac- 
tion groups appear in three columns. These two 
groups are produced when the symmetry elements 
are combined at relatively different orientations. In 
row 6, five places are empty because a fourfold 
rotary inversion cannot be combined with threefold 
and sixfold axes. In the last column, the number of 
independent diffraction groups is given in each row, 
the sum of the numbers being 31. 

2.1.2. Ident~'cation of three-dimensional symmetry 
elements. It is difficult to visualize symmetries of 
CBED patterns expected from the three-dimensional 
symmetry elements. The reason is that, if we consider 
the direct operation of a three-dimensional symmetry 
element, a specimen has to be set upside down, which 
is not realistic in usual experiments. The reciprocity 
theorem of scattering theory enables us to clarify the 
symmetries of CBED patterns expected from the 
three-dimensional symmetry elements (Pogany & 
Turner, 1968). The theorem is stated, referring to 
Fig. 2, as follows: the amplitude of a wave at B that 
originates from a source at A and is scattered by P is 

equal to the scattered amplitude at A originating 
from the same source placed at B. We consider, as an 
example, the symmetry of a CBED pattern expected 
from an inversion center. 

Fig. 3 shows stereographic projections, where the 
surface normal is taken to be parallel to the zone axis 
as shown by the cross (+) .  The incoming beam I 
running downwards is represented by the filled circle 
in Fig. 3(a). The outgoing beam O is represented by 
an empty circle. An outgoing diffracted beam G is 
also represented by an empty circle, which is pro- 
duced by displacing the outgoing beam O by the 
reflection vector G. Then, the incoming beam and the 
diffracted beam are symmetric about the point G/2. 
When the stereo projection of the incoming beam 
comes to the point G/2, the diffracted beam is set 
exactly to the Bragg condition. To simplify the dia- 
grams, only the incoming beam I and the diffracted 
beam G are shown in Fig. 3(b). In Fig. 3(c), the beam 
running reciprocal to Fig. 3(b) is shown, where the 
incoming beam (filled circle) and the diffracted beam 
(empty circle) run upward. The reciprocity theorem 
tells us that the intensities of the diffracted beams in 
Figs. 3(b) and (c) are the same. The operation of an 
inversion center on the beams in Fig. 3(c) produces 
an incoming beam and a diffracted beam - G  that 
run downward and are symmetric about the point 
-G/2 (Fig. 3d). This downward-going diffracted 
beam - G  and the diffracted beam G in Fig. 3(a) are 
shown in Fig. 3(e). The two disks, each of which 
contains one of the beams, represent CBED disks, 
the shape and size of which are usually determined 

°A 

Initial b e a m ~  '~ 

p ~,"" . 
~///////,///////////////. 

":'~R eciprocal 
beam of A 

"B 

Fig. 2. Diagram to illustrate reciprocity. The solid line shows the 
beam initially considered. The dotted line shows a beam run- 
ning opposite to the initial beam. 
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by the condenser aperture. The symmetry between 
the patterns of the two disks in Fig. 3(e) is called 2R. 
The symbol is related to the operations that translate 
the diffracted beam in one disk into that in the other 
disk; that is, the operation of a twofold rotation 
about the zone axis (symbol 2) on the beam in the G 
reflection yields the cross ( + )  in the - G  reflection. 
A rotation of thc cross by an angle 77" (subsymbol R) 
about the point - G / 2  produces the diffracted beam 
- G designated by the empty circle. The combination 
of the two operations is written as 2R. The symmetry 
is sometimes called translational symmetry because 
the pattern of the + G disk coincides with that of the 
- G disk by a translation. The pattern of a dark-field 
disk in which an exact Bragg position is set at the 
disk center is called a dark-field (DF) pattern. Sym- 
metries of CBED patterns expected from other three- 
dimensional symmetry elements were clarified with 
the help of the reciprocity theorem (Goodman, 1975; 
Buxton et al., 1976). The CBED symmetries 
obtained are illustrated in Fig. 4. A horizontal two- 
fold axis 2', a horizontal mirror plane m' and a 
fourfold rotary inversion 7~ produce symmetries mR 
(m2), 1R and 4R, respectively. The operation mR is 
shown, in Fig. 4(a), to be equivalent to the sequential 
operation of the mirror m, transforming the open- 
circle (©) beam of the G reflection into the + beam 
of the G" reflection, and the operation R (rotation of 
the disk by rr about the point G'/2), which then 
transfers this beam to the Q) position of the G' 
reflection. The combination of the two operations is 
written as mR. When the twofold axis is parallel to 
the diffraction vector G, a mirror line, perpendicular 
to the vector G and passing through the point G/2, 
appears in the CBED disk. The mirror symmetry is 
called m2, the suffix 2 being given to distinguish the 
symmetry from the mirror symmetry originating 
from a vertical mirror plane. The operation 1R (Fig. 
4b) for a horizontal mirror plane is a combination of 
a rotation of 277- about a zone axis (symbol 1) and a 
rotation of 77- about an exact Bragg position. The 
symmetry 4R (Fig. 4c) can be understood in a similar 
manner. 

The four three-dimensional symmetry elements 
were found to produce different symmetries in 
CBED patterns. These facts enable us to unambi- 
guously identify these symmetry elements from the 
symmetries of CBED patterns. 

2.1.3. Identification of two-dimensional symmetry 
elements. Because of dynamical diffraction effects, 
two-dimensional symmetry elements, which belong 
to a zone axis, exhibit their symmetries in CBED 
patterns taken at the electron incidence parallel to 
the zone axis. The patterns are called zone-axis 
patterns (ZAPs). A ZAP contains a bright-field (BF) 
pattern and a whole pattern. The BF pattern is the 
pattern appearing in the BF disk. The whole pattern 

is composed of the patterns of the BF disk and the 
diffracted disks. It should be noted that, since these 
diffracted disks do not contain exact Bragg posi- 
tions, the patterns of the disks are not called dark- 
field (DF) patterns. The two-dimensional symmetry 
elements m, 1, 2, 3, 4 and 6 yield, respectively, a 
symmetry m,. and one-, two-, three-, four- and sixfold 
rotation symmetries in the whole pattern, where the 
suffix v of my is given to distinguish the symmetry 
from the mirror symmetry m2 originating from a 
horizontal twofold axis. All the two-dimensional 
symmetry elements can be identified from whole- 
pattern symmetries. 

2.1.4. Point-group determination. All the symmetry 
elements of an infinitely extended parallel-sided 
specimen or all the diffraction groups can be identi- 
fied by the symmetries of whole and DF patterns. It 

Incidence from top b÷dl 2R 

Fig. 3. Illustration of the stereographic method to obtain CBED 
symmetries from an inversion center (see text). 

(a) 

°G 

(b) ( ~  I R 

(c) + 

4~ 

Fig. 4. Symmetries appearing in dark-field patterns. (a) mR and 
m2, (b) 1R and (c) 4R, originating from 2', m' and 74, respectively. 
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Table 3. Symmetries of zone-axe, dark-field and +_ G 
CBED patterns 

(I) Diffraction group, (II) bright-field pattern, (III) whole pattern, 
(IV) dark-field pattern, (V) __. G patterns, (VI) projection diffrac- 
tion group. 

I II HI IV V VI 

1 I 1 1 I 
2 

i ~  (IR) 1 2 = IR 1 

2 2 2 1 2 
2R 1 1 1 2n 
21R 2 2 2 21R 

I 
rn mR (m.~) 1 ._~I -'[ mR 

m2 1 

Z l _[i m, r 
m mr rnu mu 1 

2 ~  _[2 C I rnolR 
mlR {mr + rn2 + (1R)] mr 2mrm= 1 

2ram. 2 
2mRrna (2 + m~) 2 {1 rn2 2mR(m2) 

1 2 
2turn 2mrrnu. 2rn~mr. ( m ,  2mv(m~) 

I 2R I" 
2RmmR m, rrtr -~.~: 2Rm¢(m2) 

2nmn(rno) 

2rnmIR 2mrrnr. 2roomy ~2 
21/z 

2morn= 21Rmv(mv) 

4 4 4 1 2 
4a 4 2 1 2 
41R 4 4 2 21R 

4ram 
4rnRmR (4 + m2) 4 "I. 1 

[-  2 
m2 2m~(m~) 

4ram 4rnrmo, 4ravine ~ 1  
2 

mr 2m¢(m~) 

4turn ~I 2 
4~mmt¢ (2m,,mv + m~) 2m~mv rn= 2mn(m2) 

ray 2rar,(rnr) 
2 21R 

4mrnlt¢ 4morns. 4raring. {2rnom= 21~mv(m~) 

3 3 3 I 1 
6 

31s  (3 + i~) 3 2 I 

3 m  
3mR (3 + m2) 

3171 3171 r 

3 m l R  

6 
6R 
61R 

67nRITl R 

6ram 

6amrnn 

6mrnlR 

6ram 
[3mr + m2 + (IR)] 

6 
3 
6 

6rnm 
(6 + rn2) 

6mvmo. 

3mr 

6mom~. 

in2 I 

ITl r 
mr i 

1 
2 (molR 

3mr ( 2mrm2 1 

6 1 2 
3 I 2R 
6 2 21R 

2mR(m2) 
r 1 2 6m~mv -k m~ 2mv(m.) _~1 2R 

3rnr rn2 2Rm..(rn2) 
rno 2RrnR(mr) 
2 21R 

6moray -~ 2rnvrn2 21Rrnv(mr) 

1R 

H 

21R 
H 
H 

m l R  

# 

H 

2mmln 

# 

H 

H 

41R 
H 
H 

4mmlR 

H 

H 

t~ 

31R 

3 m l R  

H 

61R 
// 
# 

6mmlR 

// 

H 

should be noted that a pair of DF patterns and four 
DF patterns are needed to identify symmetry 
elements i and 4, respectively, whereas one DF pat- 
tern is enough for m' and 2'. A ZAP, or a combina- 
tion of a whole pattern and the BF pattern included 
in the whole pattern, permits the identification of 
the symmetry element 4 because no other symmetry 
element exhibits fourfold symmetry in the BF pattern 
and twofold symmetry in the whole pattern. Some 
diffraction groups can also be determined by a ZAP 
without taking DF patterns. Therefore, a practical 
method to determine diffraction groups utilizes BF, 
whole, DF and +__ G patterns. 

The symmetries appearing in BF, whole, DF and 
___ G patterns are given for the 31 diffraction groups 
in Table 3 (Tanaka, Saito & Sekii, 1983), which is 
similar to Table 2 of Buxton et al. (1976). All the 
possible symmetries of DF and __+ G patterns lying at 
various orientations are given in this table. When a 
BF pattern has a higher symmetry than the whole 
pattern, the symmetry elements that produce the 
former pattern are given in parentheses in column II 
except for the case of 4R, where this effect arises 
because the sequential operation of 4 and R is indis- 
tinguishable from the single operation of 4, for the 
BF pattern. When two types of vertical mirror plane 
exist, these are distinguished by the symbols mv and 

+ + + + ~+J+G 
1 1 R m2 mv 2 

2R mR mv, mv.1 R 21 R 

+ 

2mR(m2) 

+ + 4- + 

2m~.(mv) 2Am~.(mD 2AmR(mv) 21 Rro~.(mv) 

Fig. 5. Illustration of symmetries of dark-field patterns and _.+ G 
patterns. 
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Table 4. Relation between diffraction groups and crystal point groups [courtesy of the Royal Society of London 
(Buxton, Eades, Steeds & Rackham, 1976)] 

3mrn l R 

3rnlR 

;mm 

SmlzmR 

SIR 

31R 

6 

SRrtlrctR 

3m 

3tar 

6n 

3 

4mmlR 

4 R rttl lT~ R 

4ram 

4mRmR 

41s 

4R 

4 

2 m m l R  

2 R Tt'I rtl R 

2ram 

2msraa 

rnlR 

rn 

q'l R 

21a 

Z 

In 

I 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

X X 

X X 

X X 

X 

X X 

X 
i 

X 
! 

X X X X 
i 

X X X X X X X 
! 

X X 
i 

X X X X X X 
! 

X '  X X X X X ! 
X X X X X X X X X ! 

X X X1 X X X X X X X X X X X X X 

X ' X 
i 

X X X X X X X X X 
i 

x L x 
X X 

i 
X X X X X X X X X X X X X X X X X X X X' X 

• ,n" I',~" ~ ~ I ~  I:: I:: 

rid 

mv,. Plural symmetries seen in columns IV and V are 
obtained at exact Bragg settings of reflection disks 
appearing in different directions. Fig. 5 illustrates the 
symmetries of DF and _+ G patterns given in Table 3. 
A diffraction group is determined from the four 
patterns, BF, whole, DF and +_ G, appearing in three 
photographs, although many groups can be 
determined from a set of BF and whole patterns or a 
set of BF, whole and DF patterns. 

Possible point groups are selected from the diffrac- 
tion group obtained by consulting Table 4 (Buxton 
et al., 1976), in which the relation between the 31 
diffraction groups and 32 crystal point groups is 
given. Each of 11 high-symmetry diffraction groups 
corresponds to one crystal point group. When plural 
point groups are obtained from a diffraction group, 

a different diffraction group has to be obtained at 
another zone axis and then point groups are selected. 
Then, a point group is identified by the selection of a 
common point group existing among the point 
groups obtained at the different zone axes. 

High-symmetry zone axes have to be chosen for 
point-group determination because low-symmetry 
zone axes only exhibit a small number of crystal 
symmetries in CBED patterns. CBED is used to 
observe part of the symmetry of a given crystal; that 
is, CBED cannot be used to observe the crystal 
symmetries oblique to the incident beam and hori- 
zontal three-, four- and sixfold axes. Therefore, even 
for a crystal with a particular point group, different 
diffraction groups are expected at different crystal 
settings. Table 5 (Buxton et al., 1976) shows all the 
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Table 5. Diffraction groups expected at various crystal orientations for 32 point groups [courtesy of the Royal 
Society of  London (Buxton, Eades, Steeds & Rackham, 1976)] 

Zone-axis symmetries 

Point group 
m3m 
43m 
432 

Point group 
m3 
23 

Point group 
61mmm 
6m2 
6mm 
622 

Point group 
6/m 

6 

Point group 
~m 
3m 
32 

Point group 

3 
Point group 

4/mmm 
42m 
4ram 
422 

Point group 
4/m 

4 
Point group 

m m m  
ram2 
222 

Point group 
2/m 
m 
2 

Point group 
i 
1 

(111) (100) (110> (uvo) (uuw) 
6RmmR 4nunln 2mmlR 2RmmR 2RmmR 
3m 4RmmR mlR mR m 
3mR 4mRmR 2mRmR mR mR 

(111) (100) (uvo) 
6R 2mmlR 2RmmR 
3 2mRmR mR 

[0001] (11~.0) (1i00) [uv.o] [uu.w] [uCt.w] 
6mm l R 2rnm l R 2mm l R 2Rmm R 2 Rmm 2Rmm R 
3mlR mlR 2mm m mR m 
6mm mlR mlR mR m m 
6mRmR 2mRmR 2mnmR mR mR mR 

[0001] [uu.o] 
61R 2Rmmn 
31R m 
6 mR 

[001] 
4mmlR 
4RmmR 
4ram 
4rnRrnR 

[OOl] 
2mmln  
2mm 
2mRmR 

[UUW] 
2R 
1 

[UO,W] 
2R 
1 
1 

[UUW] 
2R 
1 
1 

[UI.W] 
2R 
1 
1 
1 

[0001] (11~0) [ur2.w] [uv.wj 
6RmmR 21R 2RmmR 2R 
3m 1R m 1 
3rnR 2 mR 1 

[UOW] 
2RmmR 
mR 
m 
mR 

[uvo] 
2RmmR 
mR 
mR 

[uow] 
2RmmR 
m 
mR 

[uow] 
2RmmR 
r n  

mR 

[uvo] 
2RmmR 
mR 
mR 
mR 

[UUW] 
2RmmR 
m 
m 
mR 

[UO0] 
2RmmR 
mR 
mR 

[uvw] 
2R 
1 
1 

[uvw] 
2R 
1 

(100> 
2mmlR 
2rnRmR 
rnlR 
2rnRmR 

[001] 
41R 
4R 
4 

[OLO] 
21R 
1R 
2 

[UO.W] 
2R 
1 

[UUW] 
2R 
1 
1 

[00011 
6R 
3 

(110> 
2mmlR 
rnlR 
mlR 
2mRmR 

(lOO) 
2mmlR 
rnlR 
2mRmR 

[UGW] 
2n 
1 
1 
1 

[UOW] 
2R 
1 
1 

diffraction groups expected at all the possible zone 
axes for the 32 point groups. A flow chart for 
the point-group determination is given by Tanaka, 
Terauchi & Kaneyama (1988). 

2.1.5. Projection diffraction groups. The effect of 
reflections of higher-order Laue zones (HOLZs) on 
the zeroth-order Laue-zone (ZOLZ) reflections takes 
place in two ways. The first results from the overlap- 
ping of dynamical Laue functions of HOLZ and 
ZOLZ reflections, giving non-sharp modulations to 
the intensities of the ZOLZ reflections. A measure of 
the amount of this effect is d /~g ,  d and (g being the 
lattice spacing and extinction distance of the HOLZ 
reflection concerned, respectively. Then, the effect 
becomes serious for strong HOLZ reflections when 
the distance between the HOLZ and ZOLZ is small 
but can be ignored for crystals with short (<1 nm) 
lattice spacings along the incident-beam direction. 
The second is caused by the direct excitation of 

HOLZ reflections appearing as HOLZ rings outside 
the ZOLZ reflection disks and as sharp defect lines in 
ZOLZ disks. This effect is more important in usual 
cases. When these HOLZ reflections are weak and 
only ZOLZ reflections are observed, the symmetry 
elements of the specimen projected along the zone 
axis are determined from such CBED patterns. The 
projection of a specimen along a zone axis introduces 
a horizontal mirror symmetry. Ten projection dif- 
fraction groups are produced by adding a symmetry 
1R to the 31 diffraction groups, as shown in the last 
column of Table 3. When only ZOLZ reflections are 
observed in CBED patterns, two projection diffrac- 
tion groups obtained from two different zone-axis 
settings are necessary to determine a crystal point 
group. It should be noted that if a diffraction group 
is identified carelessly from CBED patterns in which 
only ZOLZ reflections are observed, wrong point 
groups are deduced. 
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2.2. Space-group determination 

2.2.1. Identification of  lattice types. In the course 
of point-group determination, orientations of sym- 
metry elements are determined with respect to dif- 
fraction patterns. On the basis of results, an 
integral-number index is given to each reflection spot 
in a diffraction pattern. The systematic absence of 
reflections makes clear the lattice type of a crystal. It 
should be noted that. the reflections forbidden by 
lattice types are always absent even if dynamical 
diffraction takes place. By comparison of experimen- 
tally obtained absences and extinction rules given for 
lattice types [P, C(A,B), I, F and R], a lattice type is 
identified for a crystal examined. 

2.2.2. Identification of  screw axes and glide planes. 
There are three space-group symmetry elements of 
diperiodic plane figures: (1) a horizontal screw axis 
21; (2) a vertical glide plane g with a horizontal glide 
vector; and (3) a horizontal glide plane g'. These are 
related to point-group symmetry elements 2', m and 
m', respectively. From these elements, together with 
ten symmetry elements of the point groups, 80 space 
groups are produced. 

Usual extinction rules for screw axes and glide 
planes hold only in the approxir~ation of kinematical 
diffraction. Kinematically forbidden reflections 
caused by these symmetry elements appear owing to 
Umweganregung of dynamical diffraction; however, 
extinction of intensity still takes place in these reflec- 
tions for certain crystal settings with respect to the 
incident beam. The dynamical extinction effect was 
first-predicted by Cowley & Moodie (1959) and 
discussed by Miyake, Takagi & Fujimoto (1960) and 
Cowley, Moodie, Miyake, Takagi & Fujimoto 
(1961). Goodman & Lehmpfuhl (1964) first observed 
dynamical extinction as dark cross lines in kinemati- 
cally forbidden reflection disks of CBED patterns of 
CdS. Gjennes & Moodie (1965) developed a general 
theory of dynamical extinction between not only 
ZOLZ reflections but also HOLZ reflections. These 
extinction lines are the G-M lines. 

Fig. 6(a) illustrates Umweganregung paths to a 
forbidden reflection. The 0k0 (k = odd) reflections 
are kinematicaUy forbidden owing to a b glide plane 
perpendicular to the a axis and/or a 21 screw axis in 
the b direction. Let us consider an Umweganregung 
path a in the zeroth Laue zone for the 010 forbidden 
reflection. Path b is geometrically equivalent to path 
a with respect to the glide plane and the 21 screw 
axis. Owing to a translation of one half of the lattice 
translation caused by the 21 screw axis and/or the 
glide plane, the following relations exist between the 
crystal structure factors. 

F(h,k) = F(-h,k) for k = 2n, 
(1) 

F ( h , k ) = - F ( h , k )  for k = 2 n + l .  

That is, the structure factor of a reflection hkO and 
that of a reflection hk0 have the same phase for 
reflections of even order k but opposite phases for 
reflections of odd order k. 

Since an Umweganregung path to a kinematically 
forbidden reflection 0k0 (k = odd) contains an odd 
number of reflections with odd k, the following 
equations hold: 

F(h~,kl)F(h2,k2)...F(h,,k,,) for path a 

- -F(-hl,kl)F(-1~2,k2)...F(-fT,,k,,) for path b, (2) 

where 

Z h i = 0 ,  k i = k  ( k = o d d )  
i =  I i =  I 

and functions involving the excitation errors are 
omitted because we consider the cases where the 
functions are the same for all these paths. When the 
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OOO;i O O0. O 

i hkO 

h Im, 
(a) 

200 

f 

m 

"~ 21 
. . . . . .  b 
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Fig. 6. illustration of the production of G-M lines in kinematically 
forbidden reflections owing to a b glide plane and a 2, screw 
axis. (a) Umwegam'egung paths a, b and c. (b) A and B G-M 
lines in forbidden reflections• The first-order reflection is set at 
the Bragg condition• 
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Table 6. Dynamical extinction rules for space-group symmetry elements g, g" and 2' o f  an infinitely extended 
parallel-sided specimen 

GM lines 

Symmetry elements of Orientation to Two-dimensional Three-dimensional 
parallel-sided specimen specimen surface (ZOLZ) interaction (HOLZ) interaction 

Glide planes Perpendicular: g A 2 and B2 A3 
Parallel: g' - -  Intersection of A3 and B3 

Twofold screw axes Parallel: 2~ A 2 and B2 B3 

projection of the Laue point along the zone axis 
concerned lies on the axis k, the excitation errors 
between paths a and b are the same. Since the waves 
passing through paths a and b have the same ampli- 
tude but opposite signs, these two waves are super- 
posed on the 0k0 disks ( k = o d d )  and cancel each 
other out, resulting in horizontal dark lines A in the 
forbidden disks, as shown in Fig. 6(b). The line A 
runs along the direction of the screw axis or the glide 
translation passing the zone axis of projection. 

In path c, the reflections are arranged in reverse 
order compared with those in path b. When the 010 
reflection is exactly excited, the two paths a and c are 
symmetric with respect to the bisector ( m ' - m ' )  of 
the 010 vector and have the same excitation error. 
The waves passing through these paths have the 
same amplitude but opposite signs. That is: 

F(h~,k~)F(h2,k2)...F(h,,k,) for path a 
= - F(-h,,k,)F(-h,_ ,,k,_ ,)...F(-h,,k,) for path c. (3) 

As a result, these two waves cancel each other out on 
the 010 disk, resulting in a vertical dark line B in this 
disk, also shown in Fig. 6(b). The line B occurs 
perpendicular to the line A along the exact Bragg 
positions. When Umweganregung paths are present 
only in the zeroth Laue zone, the glide plane and 
screw axis produce the same dynamical extinction 
lines A and B. We call these lines A2 and Bz G - M  
lines, the subscript 2 indicating two-dimensional 
interaction. 

The dynamical extinction effect is analogous to the 
interference phenomenon in the Michelson interfer- 
ometer; that is, the incident beam is split into two 
beams by Bragg reflections in a crystal. These beams 
run along different Umweganregung paths, in which 
they suffer a relative phase shift of 77- when reflected 
by crystal planes and are then superposed on a 
kinematically forbidden reflection to cancel each 
other out. 

When the paths take in higher-order Laue zones, 
the glide plane produces only G - M  lines A but the 
screw axis causes only G - M  lines B. These facts are 
attributed to the different relations between structure 
factors for a 21 screw axis and a glide plane. 

F(hkl) = ( -  1)kF(hkT) for a 21 screw axis, (4) 

F(hkl) = ( -  1)kF(-hkl) for a glide plane. (5) 

In the case of the glide plane, two waves passing 
through paths a and b have opposite signs to each 
other according to the lower equation and form 
G - M  lines A, but G - M  lines B are not produced 
because the upper equation holds only for the 2~ 
screw axis. In the case of the 21 screw axis, only the 
waves passing through paths a and c have opposite 
signs according to the upper equation, forming G - M  
lines B only. We call these lines A3 and B3 G - M  lines, 
the suffix 3 indicating three-dimensional interaction. 
It was predicted by Gjonnes & Moodie (1965) that a 
horizontal glide plane g' would give a dark spot at 
the crossing point between lines A and B in Fig. 6(b), 
owing to the cancellation between waves passing 
through paths b and c. Dynamical extinction caused 
by a g',  which showed a little difference from the 
prediction, was observed for spinel and silicon 
(Tanaka, Terauchi & Sekii, 1987). Table 6 shows 
G - M  line rules for glide planes g and g' and a 2[ 
screw axis. Since the three space-group symmetry 
elements give different dynamical extinctions, these 
elements can be identified from observed extinctions. 

A horizontal screw axis and vertical glide plane 
can be identified by observation of three-dimensional 
G - M  lines A3 and B3. It is not, however, easy to 
observe three-dimensional G - M  lines because of the 
simultaneous presence of broad two-dimensional 
G - M  lines. The presence of three-dimensional G - M  
lines can be revealed by inspection of the symmetries 
of fine-defect HOLZ lines in forbidden reflections in 
place of direct observation of the G - M  lines 
(Tanaka, Saito & Sekii~ 1983). That is, if HOLZ lines 
form three-dimensional G - M  lines, the HOLZ lines 
are symmetric with respect to two-dimensional G - M  
lines and vice versa. When HOLZ lines are symmetric 
about A2 G - M  lines, the specimen crystal has a glide 
plane. When HOLZ lines are symmetric with respect 
to B2 G - M  lines, a 21 screw axis exists. It should be 
noted that HOLZ lines in ZOLZ reflection disks 
become clearly visible when relatively thick areas of 
a crystal are examined. 

Fig. 7 shows CBED patterns taken at the 010 
Bragg setting from (a) thin and (b) thick areas of 
FeS2, whose space group is P2~/a-3, with [001] elec- 
tron incidence. In the odd-order disks of Fig. 7(a), 
broad G - M  lines owing to two-dimensional inter- 
action are seen. On the other hand, the fine HOLZ 
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lines owing to three-dimensional interaction are 
clearly seen in Fig. 7(b). The HOLZ lines are symme- 
tric with respect to both A2 and B2 G - M  lines in the 
010 disk. This fact proves the presence of A 3 and B 3 
G - M  lines, or the presence of a glide plane and a 21 
screw axis, showing good agreement with the space 
group of FeS2. 

Another practical method to distinguish between 
glide planes and 21 screw axes is that reported by 
Steeds, Rackham & Shannon (1978). The method is 
based on the fact that G - M  lines are observable even 
when a crystal is rotated with a glide plane and 21 
screw axis kept parallel and perpendicular to the 
incident beam, respectively. With reference to Fig. 
6(a) ,  A3 G - M  lines produced by a glide plane remain 
even when the crystal is rotated with respect to axis h 
but all the G - M  lines are destroyed by a rotation of 
the crystal about axis k. B3 G - M  lines originating 
from a 21 screw axis are not destroyed by a crystal 
rotation about axis k but all the G - M  lines are 
destroyed by a rotation with respect to axis h. 

2.2.3. Space-group determination. We describe a 
space-group-determination method using G - M  lines 
caused by symmetry elements 2f and g of an 
infinitely extended parallel-sided specimen because 
extinction owing to horizontal glide planes g' has less 
practical importance. To be precise, a vertical glide 
plane with a glide vector that is not parallel to the 
surface cannot be a symmetry element of a specimen 
of finite thickness. The components of the translation 
vectors perpendicular to the incident beam, however, 
act as a symmetry element g. The 21, 41, 43, 61, 63 and 
65 screw axes of crystal space groups that are set 
perpendicular to the incident beam act as a symme- 
try element 2'1 because two or three successive opera- 
tions of 41, 43, 61, 63 and 65 screw axes make them 

equivalent to a 21 screw axis: (41) 2 =  (43) 2 =  (61) 3 =  
(63) 3 = (65) 3 = 21. The 42, 3t, 32, 62 and 64 sc rew axes 
that are set perpendicular to the incident beam do 
not produce G - M  lines because a 42 axis acts as a 
twofold axis owing to the relation (42) 2 = 2. In addi- 
tion, horizontal threefold screw axes give no symme- 
try in CBED patterns and 62 and 64 screw axes are 
equivalent to 32 and 31 owing to the relations (62) 2 = 
32 and (64) 2 = 31. 

The modification of G - M  line rules, given in Table 
6, when several crystal symmetry elements, which 
give rise to G - M  lines, coexist and when the symme- 
try elements are combined with various lattice types 
(Tanaka, Sekii & Nagasawa, 1983), was investigated. 
Using the results, G - M  lines A2, A3, B2 and B 3 
expected from all the possible crystal settings for all 
the space groups are tabulated (Tanaka, Sekii & 
Nagasawa, 1983; Tanaka & Terauchi, 1985). From 
the tables, it was found that 181 space groups out of 
230 can be identified using G - M  lines. 

49 crystal space groups that cannot be identified 
by G - M  lines are listed in Table 7. Most of the 
indistinguishable sets are caused by the fact that 
CBED cannot identify 42, 31(32) and 62(64) screw 
axes. These sets can most easily be distinguished by 
orienting the crystal to obtain, as near as possible, 
the systematic reflection 001 row (with the c axis 

parallel to the screw axis) only. The absence of 
strong Umweganregung paths, present in a two- 
dimensional pattern, then ensures that the kinemati- 
cally forbidden reflections will be absent or extremely 
weak. With this test, each of a space-group pair can 
be identified except the pairs in parentheses in Table 
7. These pairs form left- and right-handed space 
groups. The handedness of space groups was identi- 
fied for quartz by Goodman & Secomb (1977) and 

(a) 

(b) 

Fig. 7. CBED patterns obtained from (a) thin and (b) thick areas of a (001) FeS2 film. (a) A2 and B2 G-M lines are seen. (b) HOLZ lines 
symmetric with respect to A2 and B2 G-M lines show the presence of ,4 3 and B3 G-M lines. 
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Table 7. Crystal space groups indistinguishable by 
G - M  lines 

1. P3, (P31, P32) 12. P422, P4222 
2. P312, (P3112, P'3212) 13. P42x2, P42212 
3. P321, (P3121, P3221) 14.14, I41 
4. P6, (P62, P64) 15.1422,14122 
5. P622, (P6222, P6422) 16. I23,1213 
6. P63, (P6D P65) 17.1222,1212121 
7. P6322, (P6122, P6522) 18. P432, P4232 
8. P4, P42 19. (P4132, P4332) 
9. (P41, P43) 20.1432, 14132 

10. P4/m, P42/rn 21. F432, F4132 
11. P4/n, P42/n 

Goodman & Johnson (1977) and for MnSi by 
Tanaka, Takayoshi, Ishida & Endoh (1985). The 
senses of two crystal axes were determined with the 
aid of kinematical structure-factor calculations and 
the sense of the third crystal axis was determined 
with the aid of dynamical calculations. It should be 
noted that two special pairs (I222 and I2~2~21, and 
123 and I2~3) cannot be distinguished from kinemati- 
cal extinction rules but can be distinguished when 
atomic positions are determined. Therefore, it is not 
necessary to distinguish between these two sets of 
space groups when identifying a space group. A flow 
chart of the space-group determination is shown by 
Tanaka, Terauchi & Kaneyama (1988). Similar but 
different procedures for crystal point- and space- 
group determination have been given by Steeds & 
Vincent (1983) and Goodman (1984). 

Space-group determination as described above is 
carried out using G-M lines appearing in ZOLZ 
reflections. Vertical glide planes whose translation 
vectors are perpendicular to the specimen surface do 
not cause G-M lines in ZOLZ reflections but cause 
them in HOLZ reflections; there, they are called 'A' 
G-M lines. Vertical glide planes whose translation 
vectors have vertical components also cause G-M 
lines. It should be noted that vertical glide planes 
with glide translations not parallel to the surface are 
not symmetry elements of diperiodic plane figures. 
Vertical screw axes are expected to form G-M lines 
in HOLZ reflections whose vectors are parallel to the 
screw axes; however, these reflections cannot be 
observed by usual transmission CBED. Therefore, 
only these glide planes can be identified from G-M 
lines in HOLZ reflections. 

Tables of G - M  lines appearing in HOLZ reflec- 
tions at various incident-beam orientations for all the 
space groups that have glide planes are given by 
Tanaka, Terauchi & Kaneyama (1988). Simultane- 
ous examination of ZOLZ and HOLZ G - M  lines 
enables quicker and easier identification of crystal 
space groups. It has been shown that CBED does 
not necessarily observe the space-group elements of 
diperiodic plane figures. Then, to give the relation 
between the space groups of crystals and those of 
diperiodic plane figures is of no importance. It must 

be emphasized that CBED observes the point- and 
space-group symmetry elements of crystals. Discus- 
sions of symmetry elements observed by CBED and 
the details of symmetry determination are given by 
Tanaka, Terauchi & Kaneyama (1988) and Tanaka 
(1989). 

2.3. Example 

We demonstrate the point- and space-group- 
determination procedures using La2CuO4_8 as an 
example. La2_xMxCuO4_ 8 (M = Ba, Sr and Ca) is a 
40 K class superconductor. Many space groups were 
proposed for this system: Fmmm, From2, F222 and 
Cmmm (or C222) for La2_xSrxCuO4_~; Cmca, Pccn 
and Cmmm for La2_xBaxCuO4_~; Cmca, Peon and 
Cmmm for La2CuO4_~. These controversial results 
were attributed to specimen preparation, doping 
effects and experimental accuracy. Intensity profile 
fits obtained by the Rietveld method for the neutron 
powder diffraction data from as-grown La2CuO4_ 
were excellent but showed no difference for the two 
space groups, Cmca and Pccn. Therefore, the space 
groups could not be distinguished from the powder 
diffraction data. 

The substance was already known to belong to the 
orthorhombic system with the lattice parameters a = 
5.3548, b=5.4006 and c=13 .1592A.  Fig. 8(a) 
shows a CBED pattern taken at [001] incidence, Fig. 
8(b) being the central part of Fig. 8(a). The whole 
pattern has symmetry 2ram. This indicates that the 
crystal has two mirror symmetries perpendicular to 
each other and that the point group is mmm or mm2. 
To investigate whether the third mirror plane per- 
pendicular to these two mirror exists or not, a CBED 
pattern was taken at [100] incidence [Fig. 9(a), of 
which Fig. 9(b) shows the central part]. Two mirror 
planes are seen, of which one is the third one. As a 
result, the point group was determined to be mmm. 

Ordinary electron diffraction patterns revealed the 
lattice type to be B centered. Fig. 9(c) was taken by 
tilting the incident beam in the b* direction from the 
[100] zone axis to clearly observe the G-M lines. A2 
G-M lines are seen in the 010 and 030 reflections. 
Reference to Table 8 for ZOLZ G - M  lines clarifies 
that the possible space groups are Bmab and Bmmb. 
Table 8 indicates that we can distinguish two space 
groups if we examine whether G-M lines appear in 
hoOlo reflections at a [u0w] incidence; however, an 
examination at a low-symmetry incidence must also 
be conducted but may be troublesome. Further 
examinations are possible at high-symmetry inci- 
dences, when HOLZ G-M lines are utilized. Table 9 
shows that two space groups can be distinguished 
when it is examined whether A G-M lines appear in 
hoOlo HOLZ reflections at the [100] incidence. Since a 
CBED pattern at this incidence has already been 
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taken, no new experiment is necessary. In Fig. 9(a), 
A G -M lines are seen in the 101 and 107 HOLZ 
reflections. Therefore, the space group was 
determined to be Bmab, which is equivalent to the 
standard notation Cmca. 

3. Symmetry determination of four-dimensional 
crystals - incommensurate crystals 

3.1. CBED symmetries from incommensurate crystals 

It was shown by de Wolff (1974, 1977) that a 
one-dimensional displacively and substitutionally 
modulated crystal can be described as a three- 
dimensional section of a four-dimensional (periodic) 
crystal. Janner & Janssen (1980) developed a more 
general approach to describe the modulated crystals 
with n modulations as the (3+n)-dimensional 
(periodic) crystals (n = 1, 2, ...). A. Yamamoto (1982) 
derived a general structure-factor formula for the 
n-dimensionally modulated crystal (n= l, 2, ...), 
which holds for both displacively and substitu- 
tionally modulated crystals. The tables of the four- 
dimensional space groups for one-dimensional 
incommensurately modulated crystals were given by 

(a) 

(b) 

de Wolff, Janssen & Janner (1981). Later, some 
corrections of the tables were reported by 
Yamamoto, Janssen, Janner & de Wolff (1985). 

We are concerned here only with displacively 
modulated crystals. Fig. 10(a) illustrates the four- 
dimensional description of a one-dimensional dis- 
placively modulated structure. The arrows labeled 
a~-a4 indicate the four-dimensional crystal axes. The 
horizontal line labeled R3 represents the three- 
dimensional space (real world). In the four- 
dimensional description, an atom is not located at a 
point as in three-dimensional space but is expressed 
by a string, which extends along the fourth direction 
a4 perpendicular to the three-dimensional space R 3. 

The parallelogram drawn with a thick line is a unit 
cell in the four-dimensional space. The unit cell 
contains two atom strings. The wavy shape of the 
atom strings, which are periodic along a4, represents 

(a) 

(b) 

(c) 

Fig. 8. (a) CBED pattern of La2CuO4 ~ taken at [001] incidence; 
(b) the central part of (a). 

Fig. 9. (a) CBED pattern of La2CuO~8 taken at [100] incidence; 
(b) the central part of (a); (c) pattern produced by slightly tilting 
the incidence in the b* direction. 
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Table 8. Z O L Z  G - M  line table for  space groups nos. 63-68 

Incident beam 
direction [100] [010] [001] [uv0] [0vw] [u0w] 

Space grou-~N N 

63 B2/m2flrn21b b.2~ A~ B~ 2~ B~ b As 2:~ B~ 

0ko0 A~ B~ 
b,2~ A~ B~ 

0ko0 
b~ 

OkoO 
b~ 

A3 

A3 

ok.o 
2~ B~ 

OkoO 
b, A~ 

0ko0 
b~ A3 

b A~ 

hfl%0 Az B~ 
b~ A~ 

h~ko0 A2 B2 
b2 A3 

Okol~ Az B2 
b~ A3 

Okol. A2 Bz 
b~ A3 

64 B2/m2da2/b 

65 B2/m2/m2/m 

66 B2/b2/m2/b 

67 B2/m2/a2/m 

68 B2/b2/a2/b 

hoOto Az B~ 
a A~ 
OkoO & B2 
2, B~ 

hoOlo A2 B2 
a A3 

hoOlo A2 B2 
a A3 

Table 9. H O L Z  G - M  line table ~for space groups nos. 63-68 

Incident beam 
direction [100] [010] [001]~ [uv0] [0 vw] [u0w] 

Space 

63 B2/m2t/m2/b hekoO A h~koO A h~koO Ah 
b b b 

o ~ 1  ¢'¢rl,.ll~TIZtO ,'~ A ._ z't t,. h ~ *'Itl~ 
hoot  ~ b u o u 

65 B2/m2/m2/m 

66 B2/b2/m2/b 

67 B2/m2/a2/m 

68 B2/b2/a2/b 

h~koO A 
b23 

ho0lo A 
a 

h,koO 
bz~ A 
hoOlo 
a 

Okolo 
b, 
h~koO 
b23 

Okole 

hckoO 
b23 

OGle 
bjl 

hoOlo 
a 

hoOlo 
a 

Oko~ 
bll 

h,koO Ah 
b23 

h~koO Ah 
bz3 

Okol~ 
b~k A. 

Oko~ A, 
b,  

hoOlo A. 
a 

hoOlo Ah 
a 

a displacive-type modulation. The width of the atom 
strings indicates the spread of the atom in R3. The 
atom positions of the modulated structures in R3 are 
given as a three-dimensional section of the atom 
strings in the four-dimensional space. The diffraction 
vector G is written as 

G = hla* + h2b* + h3c* + h4k, 

where a set of hlh2h3h4 is a four-dimensional reflec- 
tion index and a*, b* and c* are the reciprocal-lattice 
vectors of the real-lattice vectors a, b and c of the 
average structure. The modulation wave vector k is 
written as 

k = k~a* + k2b* + k3c*, 

where one coefficient of k,(i = 1-3) is an irrational 
number and the others are rational. The structure 
factor F(hlhzh3h4) for the four-dimensional crystal is 
given by de Wolff (1974, 1977) as follows. 

N 

F(hlh2h3h4) = Z f~, exp 27ri(hlxf + h2x~ + h3x~) 
/z=l 

x exp 2rri + h4ki)u~ 
0 i 

h4x-~~ ] dx~, (6) + 

where x~2 = (x~ + nl)kl + (x~ + n2)k2 + (x~ + n3)k3. 
The symbols fu and x~(i = 1-3) are the atom form 



274 CONVERGENT-BEAM ELECTRON D I F F R A C T I O N  

factor and the ith component of the position of the 
izth atom in the unit cell of the average structure, 
respectively. The symbol u,." is the ith component of 
the displacement from the atom position x-T of the 
/xth atom. Since the atom in the four-dimensional 
space is continuous along a4 and discrete along R3, 
the structure factor is expressed by the summation in 
R3 and the integration along a4. A three-dimensional 
section of the four-dimensional unit cell gives a 
modulated atomic arrangement at a unit cell of the 
average structure in R3. Then, the atom strings in the 
four-dimensional unit cell correspond to the sum of 
the atom displacements over an infinite number of 
unit cells of the average structure. This means that 
(6) is the structure factor for the unit cell with the 
lattice parameter of an infinite length in R3 along the 
direction of the modulation wave vector k. 

For simplicity, we assume that the modulation 
wave vector is written as k = k3e* and the modulated 
structure belongs to the four-dimensional space 
group PP2/T. This space-group symbol indicates that: 
(i) the modulation wave vector k exists inside the first 
Brillouin zone for the average structure (P); (ii) the 
average structure belongs to the space group P2/m; 
(iii) the modulated structure has a twofold rotation 
axis, which is common to both the average and 
modulated structures (subsymbol 1), but does not 
have the mirror symmetry possessed by the average 
structure (subsymbol 1). For the twofold rotation 
axis of this four-dimensional space group, the struc- 
ture factor F(h~h2h3h4) [(6)] is written as 

N 

F(hlhzh3h4) = Z f ,  exp 27ri(h~x~ + h2x~ + h3x~) 
~ = 1  

x / i  exp 2zri[hlU~¢ + hzu~ 
k 0  

+ (h3 + h4k3)u~ + h4x2]dx--~2 } 
J 

N 

+ ~. f~ expZzri(-hl-~l-hz-~2+h3-~3) 
t x = l  

x exp 2 z r i [ - h l U ~ -  h2u~ 

+ (h3 + h4k3)u~ + h4x2]dx~}, (7) 

where x~ = (x~; + n3)k3. We consider the reflections 
hth2h3h 4 and hthah3h4, which are equivalent with 
respect to the twofold rotation axis of the average 
structure. The symmetry subsymbol 1, which is writ- 
ten beneath symmetry symbol 2 in the expression for 
the four-dimensional space group, indicates that the 
modulation wave vector k is transformed into itself 
by symmetry operation 2 of the average structure. It 
is clear from (7) that the structure factor F(hlhzh3h4) 
is equal to the structure factor F(hlhzh3h4). Hence, 
the intensities of the hlhzh3h4 and hlh2h3h4 reflections 
are equal. It is clarified that the symmetry of the 

reflections (h4 ;~ O) due to the modulated structure 
(incommensurate reflections) is the same as that of 
the fundamental reflections (h4--O) due to the aver- 
age structure with respect to the twofold rotation 
axis of the average structure. 

Next, we consider the reflections hlh2h3h 4 and 
h~hzh3h4, which are equivalent with respect to the 
mirror symmetry of the average structure. The 
symmetry subsymbol 1, which is written beneath 
symmetry symbol m in the expression for the 
four-dimensional space group, indicates that the 
modulation wave vector k is transformed into - k by 
the symmetry operation m. For the incommensurate 
reflections (h4 ¢ 0), the formulas corresponding to 
the terms within curly brackets of F(h~h2h3h4) in (7) 
are not equal to those of F(h~h2h3h4) because k3 is an 
irrational number. Hence, the intensity of the 
hlh2h3h4 reflection is not equal to that of the hlh2h3h4 
reflection. For the fundamental reflections (h4 = 0), 
the intensity of the hlh2h30 reflection is equal to that 
of the hlhzh30 reflection because F(h~h2h30) is equal 
to F(h~h2-h30). It should be noted that this mirror 
symmetry m between the fundamental reflections is 
expected to be destroyed by the dynamical diffrac- 
tion effect between the fundamental and incommen- 
surate reflections. In most modulated structures, 
however, the amplitude of the modulation wave u~ is 
not so large as to affect the symmetry of the fun- 
damental reflections. Therefore, the fundamental 
reflections should show the symmetry of the average 
structure, while the incommensurate reflections lose 
this symmetry. The results obtained are summarized 
in the following rules. 

(1) For symmetry subsymbol 1, both fundamental 
and incommensurate reflections show the symmetries 
of the average structure. 

',,4 ';~ ~ 

(a) (b) 

Fig. I0. Four-dimensional description of a one-dimensional dis- 
placively modulated crystal. The wavy strings are the four- 
dimensional atoms with a displacive modulation. (a) An infinite 
crystal, atoms being continuous in the a4 direction. (b) A 
finite-volume crystal, atoms being expressed by three- 
dimensional sections with a finite number. 
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(2) For symmetry subsymbol 1, the fundamental 
reflections, in practice, show the symmetries of the 
average structure but the incommensurate reflections 
do not have any symmetries. 

Rule (1) also holds for the symmetry subsymbols s, 
t, q and h of the four-dimensional space groups 
because those space-group symbols are expressed by 
subsymbol 1 in the frame of the four-dimensional 
point groups. 

Real CBED patterns are obtained from a finite 
area of a crystal. A modulated structure with a finite 
volume in R3 is expressed by a finite number of 
three-dimensional sections of atom strings in the 
four-dimensional unit cell, as shown in Fig. 10(b). 
Hence, it is necessary to use the structure factor which 
takes account of the effect of the finite size. The effect 
was clarified in detail by Terauchi & Tanaka (1993). 
The results obtained are summarized as follows. 

(a) The four-dimensional symmetries can appear in 
CBED patterns if the patterns are taken from a 
specimen volume that contains more than one unit 
cell of the average structure. In other words, to 
obtain the symmetries expected from the four- 
dimensional symmetry symbols, it is not necessary to 
take the CBED pattern from such a specimen area 
whose diameter is larger than the approximate 
period of the modulated structure (the approximate 
least common multiple between the modulation 
wavelength and the unit-cell length of the average 
structure). 

(b) Even if the size and the position of an illumi- 
nated specimen area are changed, the intensity distri- 
bution in the CBED pattern changes but the 
symmetry of the pattern does not change. 

It is worthwhile to note the following facts. If the 
point-group symmetry of the average structure and 
the modulation wave vector k are completely known, 
the four-dimensional point groups themselves are 
determined by inspection of only how the modula- 
tion wave vector k is transformed by the symmetry 
operations of the average structure, although the 
symmetries of incommensurate reflections provide 
important information for the confirmation of the 
point groups. From this, it is seen that correct 
determination of the point-group symmetry of the 
average structure is very important in the determina- 
tion of the four-dimensional point groups. Then, 
there is no doubt that the point groups of the 
average structure can be determined unambiguously 
by the CBED method when the amplitude of the 
modulation wave u~ is not so large as to affect the 
symmetry of the fundamental reflections. 

Terauchi & Tanaka (1993) also studied the case of 
substitutionally modulated crystals and clarified that 
rules (1) and (2) given above hold for this case, 
although a large enough volume to give the average 
atom form factor has to be illuminated. 

Terauchi, Takahashi & Tanaka (1994) have shown 
theoretically that dynamical extinction occurs for the 
screw axes and glide planes of the incommensurately 
modulated crystal, which has an infinite dimension 
along the direction of the incommensurate modula- 
tion wave vector. They have also shown that 
approximate dynamical extinction can occur in the 
CBED patterns obtained from a finite specimen 
volume of the four-dimensional crystal. The tables of 
the dynamical extinction lines appearing in CBED 
patterns have been given by them for all the four- 
dimensional space groups. They have observed dyna- 
mical extinction in kinematically forbidden incom- 
mensurate reflections from SrzNb207. 

3.2. Example 

Many materials of the A2B207 family undergo 
phase transformations from the space group Cmcm 
to Cmc2~ to P21 with decreasing temperatures. The 
phase transformation from Cmcm to Cmc21 has been 
reported to occur as a result of the rotation of the 
oxygen octahedra about the a axis with a slight 
deformation of the octahedra. The transformation 
from Cmc2~ to P2~ has been considered to be caused 
by rotation of the octahedra about the b axis. An 
incommensurate phase appears, for example, in 
La2Ti207 (Tanaka, Sekii & Ohi, 1985) between the 
phase with space group Cmc2~ and that with P2~. 
SrzNb207 transforms from the phase with Cmc2~ 
into an incommensurate phase at 488 K but does not 
transform into the phase with P2~. No discommen- 
suration has been observed even at lower tempera- 
tures in the incommensurate phase. It was reported 
by N. Yamamoto (1982) and Yamamoto & Ishizuka 
(1983) that the modulated structures in this phase 
can be explained by the rotation of the oxygen 
octahedra about the b axis. 

The incommensurate phase has a modulation 
wave vector k =  ( ~ -  8)a* (8 =0.009-0.023). The 
symmetry of the incommensurately modulated 
structure of Sr2Nb207 is expressed by the four- 
dimensional space group ~oC-mc~,~ (Yamamoto, 1988). 
Then, the four-dimensional point group of the struc- 

m m 2  ture is written as ~ r .  The symbol implies the fol- 
lowing substance. The modulation wave vector k is 
transformed to - k  by a mirror symmetry operation 
perpendicular to the a axis ('~) and by the twofold 
rotation-symmetry operation along the c axis (7). The 
wave vector is transformed into itself by the mirror 
symmetry perpendicular to the b axis (~. 

The experiments have been carried out with an 
electron probe about 3 nm in diameter. It should be 
noted that the probe size was smaller than the 
approximate period of the modulated structure - 
about 40 nm for SraNb207. 

Fig. 11 shows a CBED pattern of the incommen- 
surate phase of Sr2Nb207 obtained with the [010] 
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incidence at an accelerating voltage of  60 kV. The 
reflections indicated by arrows are incommensura te  
reflections owing to the modulat ion.  Other  reflec- 
tions are fundamenta l  reflections owing to the aver- 
age structure. The four-dimensional  point-group 
symmetries (~) about  the a axis and (7) about  the c 
axis appear  in this C B E D  pattern. When  rule (2) of  
§ 3.1 is considered, symmetry  ('~) exhibits mir ror  
symmetry  perpendicular  to the a axis between the 
fundamenta l  reflections but no mirror  symmetry  
between the incommensura te  reflections. The same 
symmetries are expected from symmetry  (]) in the 
framework of  the projected potential  approximat ion .  
Fig. 11 shows these symmetries  exactly. 

Fig. 12 shows a C B E D  pattern of  the incommen-  
surate phase obtained with [201] incidence at an 
accelerating voltage of  60 kV. The reflections in two 
rows indicated by arrows are the incommensura te  
reflections. The other reflections are fundamenta l  
ones. The four-dimensional  point-group symmetry  
about  the b axis ('7) appears  in this pattern. With  
reference to rule (I) of  § 3.1, symmetry  ('7) displays 
mirror  symmetry  perpendicular  to the b axis not only 
between the fundamenta l  reflections but also between 
the incommensura te  reflections. Fig. 12 clearly shows 
the mirror  symmetry  between both kinds of  reflec- 
tions. Fig. 13 shows a C B E D  pattern obtained with 
the same incidence as in Fig. 12 but  from a slightly 
different specimen area with nearly the same speci- 
men thickness. The pattern shows the same symme- 
try as in Fig. 12 but the intensity distr ibut ion is 
different. This confirms result (b) described in § 3.1. 

The space-group symbol  imlies that the modula ted  
structure has four-dimensional  glide planes (]:) per- 
pendicular  to the b axis with a shift of  1 iC q- ~a 4. Then, 
the reflections with h3 + h4 = 2n + 1 are kinematical ly  

forbidden. Fig. 14(a) shows an electron diffraction 
pattern obtained with [001] incidence at an accelerat- 
ing voltage of  60 kV. The reflections in four columns 
indicated by black arrows are incommensura te  
reflections owing to the modulat ion.  The reflections 
0001, 0001, 2001 and 2001 indicated by white arrows 
are kinematical ly  forbidden but  have intensities 
owing to mult iple diffraction. Other  reflections are 
fundamenta l  reflections owing to the average struc- 

Fig. 12. CBED pattern of the incommensurate phase of Sr2Nb207 
taken with [201] incidence at 60 kV. The reflections at two levels 
indicated by arrows are the incommensurate ones; the others are 
fundamental ones. Both the fundamental and incommensurate 
reflections show mirror symmetry perpendicular to the b axis. 

Fig. 11. CBED pattern of the incommensurate phase of Sr2Nb207 
taken with [010] incidence at an accelerating voltage of 60 kV. 
The reflections with arrows are incommensurate reflections 
owing to the modulation and the others are fundamental ones 
owing to the average structure. The latter reflections show 
mirror symmetry perpendicular to the a axis; the former do not. 

Fig. 13. CBED pattern of the incommensurate phase of Sr2Nb207 
with the same incidence as in Fig. 12 but from a different 
specimen area. The symmetry is the same as in Fig. 3 but the 
intensity distribution is different. 
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ture. Fig. 14(b) shows a CBED pattern of the incom- 
mensurate phase obtained with the same incidence as 
in Fig. 14(a). The excitation errors between geomet- 
rically equivalent Umweganregung paths about a* to 
a kinematically forbidden reflection are the same. 
The kinematically forbidden reflections indicated by 
arrows show no intensity. This is a result of dyna- 
mical extinction for the four-dimensional crystal. 
The dynamical extinction does not appear as a line in 
Fig. 14(b) because the size of the diffraction disk is 
set small to avoid overlapping of the diffraction disks 
and the width of the dynamical extinction line 
exceeds the disk size. This experiment has revealed 
that dynamical extinction occurs from the four- 
dimensional glide plane for a displacively modulated 
crystal. Therefore, the dynamical extinction enables 
the space-group determination of the four- 
dimensional crystals or one-dimensional incommen- 
surately modulated crystals. 

4. Symmetry determination of  five and six- 
dimensional crystals - quasicrystais 

4.1. Icosahedral quasicrystals - six-dimensional 
crystals 

Penrose (1974) demonstrated that the two- 
dimensional plane can be tiled with thin and fat 

(a) 

(b) ] 

Fig. 14. (a) Usual electron diffraction pattern and (b) CBED 
pattern of the incommensurate phase of Sr2Nb207 taken with 
[001] incidence at 60 kV. The kinemetically forbidden reflections 
indicated by short arrows show finite intensities in (a) but not in 
(b). No intensity in (b) is a result of dynamical extinction. 

rhombi to give a pattern with local fivefold rotation 
symmetries but with no translational symmetry. 
Mackay (1982) extended the tiling to three dimen- 
sions using acute and obtuse rhombohedra, which 
also resulted in the acquisition of local fivefold sym- 
metries and in the vanishing of the translational 
symmetry. [The three-dimensional space-filling 
method was later completed by Ogawa (1985).] 
These, however, remained a matter of design or 
geometrical amusement until Schechtman et al. 
(1984) discovered an icosahedral symmetry presu- 
mably with long-range structural order in an alloy of 
AIrMn (nominal composition) using electron diffrac- 
tion. Since then, the new class of structural order, 
which has no translational symmetry but has long- 
range structural order, has been called the 'quasicrys- 
tal'. Levine & Steinhardt (1984) showed that the 
quasilattice produces sharp diffraction patterns and 
succeeded in reproducing almost exactly the diffrac- 
tion pattern obtained by Shechtman et al. (1984) 
using the Fourier transform of a quasiperiodic 
icosahedral lattice. In the course of analyzing X-ray 
and electron diffraction data, diffraction peaks could 
be successfully indexed by six independent vectors 
pointing to the vertices of an icosahedron. Then, it 
was found that the icosahedral quasicrystal can be 
described in terms of a regular crystal in six dimen- 
Sions (e.g. Jarir, 1988). The quasicrystal is produced 
by the intersection of the six-dimensional crystal with 
an embedded three-dimensional hyperplane (the cut 
and projection technique). 

First, we investigated an alloy of the same com- 
position (Tanaka, Terauchi, Hiraga & Hirabayashi, 
1985) as that studied by Shechtman et aL (1984), 
their quasicrystalline grains later being found to be 
A14Mn. The grains of the quasicrystal were found to 
be less than 10 nm in size. All the CBED patterns 
obtained from a volume about 10 nm (diameter)x 
100 nm (height) did not exhibit any fivefold or ten- 
fold symmetry, although ordinary electron diffrac- 
tion patterns showed tenfold symmetry. Small-area 
parallel-beam electron diffraction patterns taken 
from about 100 nm-diameter areas at an incidence 
along the tenfold axis revealed that the quasicrystal 
was highly strained. Three principal diffraction spots 
showed a zig-zag deviation from the radial line. 
Lubensky, Socolar, Steinhardt, Bancel & Heiney 
(1986) interpreted the result in terms of aniso- 
tropically quenched phason strains. 

The addition of several percent of silicon to 
A1-Mn alloys caused a great increase in the degree of 
order of the quasicrystal. Bendersky & Kaufman 
(1986) prepared such a less-strained quasicrystalline 
m171Mn23Si6 alloy and determined its point group. 
They obtained fairly good zone-axis CBED patterns 
that showed symmetries of l Omm, 6mm and 2mm in 
ZOLZ disks and 5m, 3m and 2ram in HOLZ rings. 
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From these results, they identified the point group to 
be centrosymmetric m35. Tanaka, Terauchi, Hiraga 
& Hirabayashi (1987) examined the crystallographic 
properties of a less-strained quasicrystalline 
A174Mn2oSi6 alloy. Figs. 15(a) and (b) show 0.1 I~m 
quasicrystalline grains of A174Mn2oSi6. Electron dif- 
fraction pattems taken from a 1 l0 nm-diameter area 
with a small incident-beam divergence of 0.03 mrad 
exhibited the innermost reflections with a lattice 
spacing of 2.27 nm. Among strong reflections, many 
weak diffraction spots appear, which were not 
observed in Al4Mn and A171MnEaSi 6 alloys. The 
reflections at high scattering angles have a stronger 
intensity than in Al4Mn. These results indicate that 
the alloy A174Mn2oSi6 has a much greater ordering 
than the other two. Figs. 16(a)-(f) show three pairs 
of CBED patterns taken from an area about 100 nm 
thick and about 3 nm diameter of an A174Mn2oSi6 
quasicrystal at an accelerating voltage of 60 kV. 
Each pair consists of a ZOLZ pattern and a HOLZ 
pattern. The former is produced almost by the inter- 

C 
4 

Fig. 15. (a) Bright-field and (b) dark-field electron micrographs of 
A174Mn2oSi6 showing about 0.1 ixm-diameter quasicrystalline 
grains. 

action of ZOLZ reflections. Distinct symmetries are 
seen in several disks. Many HOLZ rings and Kikuchi 
bands are clearly seen in the HOLZ patterns. The 
profiles of Kikuchi bands are symmetric with respect 
to their centers [Figs. 16(b), (d) and (f)]. These 
results contrast strongly with those for A14Mn and 
indicate that the constituent atoms form a highly 
ordered arrangement of the quasicrystal. 

The whole pattern of Fig. 16(a), formed by ZOLZ 
reflections, exhibits a tenfold rotation and two types 
of mirror symmetry, the resultant symmetry being 
expressed as l Omm. The whole pattern of Fig. 16(b), 
formed by HOLZ reflections, shows a fivefold sym- 
metry and a type of mirror plane, the resultant 
symmetry being expressed as 5m. Figs. 16(c) and (d) 
show symmetries 6mm and 3m, respectively. Figs. 
16(e) and ( f )  show symmetry 2mm. 

It is known that there exist two icosahedral point 
groups 235 and m35. The former is noncentro- 
symmetric and has no mirror symmetry but the latter 
is centrosymmetric. Table 10 shows diffraction 
groups expected from these point groups at the 
incident beam parallel to the fivefold or tenfold axis 
and their symmetries appearing in whole, BF, DF 
and ___ G patterns. Projection diffraction groups and 
their symmetries, in which only the interaction 
between ZOLZ reflections is taken into account, are 
given in the second row. Diffraction groups obtained 
at other incident-beam orientations are omitted since 
these have been given in the references of Buxton et 
al. (1976) and Tanaka, Saito & Sekii (1983). The 
whole-pattern symmetries observed in the present 
quasicrysta_l agree with those expected from point 
group m35, which was obtained by Bendersky & 
Kaufman (1986). Fig. 17(a) shows a zone-axis CBED 
pattern taken at an electron incidence along the 
threefold axis. Figs. 17(b) and (c) show a pair of +__ G 
dark-field CBED patterns. The pattern of the + G 
dark-field disk coincides with that of the - G  disk 
when the former is superposed on the latter with 
translation of -2G.  This symmetry, 2R, directly 
proves that the quasicrystal is centr0symmetric, 
again indicating the point group to be m35. The 
lattice type was found to be primitive and no dyna- 
mical extinction was observed. Then, the space group 
of the alloy was determined as Pm35. 

Quasicrystals of AI-Mn alloys were produced by 
the melt-quenching method and were thermodyna- 
mically metastable. Tsai, Inoue & Masumoto (1987) 
first reported the existence of a stable icosahedral 
phase of A165Cu2oFels. This alloy was found to have 
larger grains and to provide much better quality 
diffraction patterns with less phason strains than 
A174Mn20Si6. It was soon recognized that the lattice 
type of this phase and of some other A1-Cu- 
transition metal (TM) alloys is different from that of 
previously discovered ones. That is, the diffraction 
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7. 

Fig. 16. Three pairs of ZOLZ and HOLZ whole patterns, showing symmetries (a) 10mm, (b) 5m, (c) 6mm, (d) 3m, (e) 2mm and ( f )  2mm. 
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Table 10. Diffraction groups of  the icosahedral point 
groups and their CBED symmetries 

Point Diffraction BF Whole DF DF 
group g r o u p  pattern pattern pattern pattern 

{' /' 
5mR 5m 5 mR 

235 rn2 1 
(Projection) { 2 = I R { I 

5ml R IOmm 5m rnvl R 
2m~m2 1 

I 2R 
__ lORmmR lOmm 5m m2 2Rm2 

m35 m, 2R rnv 
(Projection) 

10mm I R 10mm I Omm f 2 21 R 

I 2re,m2 21Rm, 

pattern of AI-Cu-TM alloys displayed many addi- 
tional spots to the twofold diffraction pattern of the 
melt-quenched alloys. It was found that the pattern 
was indexed either by all (six) even or all (six) odd or 
by a face-centered (F) lattice and that of A1-Mn 
alloys by a primitive lattice (Ebalard & Spaepen, 
1989). All tbe icosahedral quasicrystals known to 
date belong to the point group m35 but those with 
the noncentrosymmetric point group 235 have not 
been discovered. 

(a) 

(b) (c) 

Fig. 17. (a) Zone-axis  C B E D  pattern taken at an incidence along 
the threefold axis. (b) and (c) __ G dark-field C B E D  patterns. 

4.2. Decagonal quasicrystals - five-dimensional 
crystals 

The decagonal quasicrystal was first found by 
Bendersky (1985) in an alloy of AI-Mn using the 
electron diffraction technique. The phase has transla- 
tional symmetry parallel to the tenfold axis and 
quasiperiodic long-range structural order perpen- 
dicular to the axis. The diffraction peaks were 
indexed by one vector parallel to the tenfold axis and 
four independent vectors pointing to the vertices of a 
decagon. Then, the decagonal quasicrystal is 
described in terms of a regular crystal in five dimen- 
sions. 

Two space groups, PlOs/m and PlOs/mmc, have 
been proposed by Bendersky (1986) and Yamamoto 
& Ishihara (1988), respectively, for the alloy. Owing 
to the low quality of the specimen, our CBED 
examination of the AI-Mn alloy could not determine 
whether the point group was lO/m or lO/mmm. 
Furthermore, dynamical extinction owing to the 
screw axis was not observed in the CBED patterns. 
The quasicrystal and those of AI-M (M = Fe, Ru, 
Pt, Pd,...) alloys found at an early stage were thermo- 
dynamically metastable. Subsequently, thermodyna- 
mically stable decagonal phases were discovered in 
ternary alloys of A165CulsCo2o (Tsai, Inoue & Masu- 
moto, 1989a), A165Cu2oCox5 (He, Wu & Kuo, 1989) 
and A17oNi~sCOl5 (Tsai, lnoue & Masumoto, 1989b). 
Electron microscopy of the decagonal phases 
revealed that the quasicrystalline grains were less 
than 10 nm in diameter and contained many planar 
defects. In electron diffraction patterns taken at elec- 
tron incidences along the decagonal axis, only 
intense reflections were observed; weak reflections, 
which were observed for the icosahedral phases of 
good quality, were faint or not visible. Moreover, the 
observed reflection spots were not sharp and had 
irregular shapes. Space-group determination by 
CBED was barely successful only for A1-Ni-Co 
alloys - centrosymmetric P10/mmm. 

Recently, Tsai, Inoue & Masumoto (1989c) pro- 
duced a metastable but good-quality decagonal 
quasicrystal of AlToNi~sFe~5. This alloy was found to 
be the first decagonal quasicrystal that could tolerate 
the symmetry examination using CBED. It is worth- 
while pointing out that the metastable quasicrystal 
has a higher quality or a higher degree of order 
about quasicrystallinity than the stable quasicrystals. 
The space-group determination of the quasicrystal- 
line Al7oNi~sFe~5 alloy by CBED was conducted by 
Saito, Tanaka, Tsai, Inoue & Masumoto (1992). 

Fig. 18 shows a CBED pattern taken from an area 
of 3 nm diameter with a incidence parallel to the 
fivefold axis (c axis) of Al7oNi~sFe~5. The pattern 
clearly exhibits fivefold rotation and mirror symme- 
try, the total symmetry being expressed as 5m. A 
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slowly varying intensity distribution in the disks 
indicates that the pattern is not affected by the 
interaction with HOLZ reflections but is formed by 
interactions between ZOLZ reflections. Thus, the 
projection approximation should be applied to the 
analysis of the pattern. Changes of the illuminated 
specimen area sometimes produced the patterns that 
were related to Fig. 18 by an inversion, indicating the 
existence of inversion domains. Fig. 19 shows pos- 
sible pentagonal and decagonal point groups, which 
were constructed by consulting the trigonal and hex- 
agonal point groups given in International Tables for 
X-ray Crystallography (1952). It can be seen that the 
point groups that satisfy the observed symmetry 5m 
in the projection approximation are 52, 5m and 
10m2. The point group 52 is a possibility because the 
horizontal twofold axis is equivalent to the vertical 
mirror plane in the projection approximation. Figs. 
20(a) and (b) were taken from 3 nm-diameter areas 
with incidences A and B, respectively; these inci- 
dences are denoted in Fig. 18. Mirror symmetry 
perpendicular to the c axis is seen in Figs. 20(a) and 
(b). Since this symmetry requires a twofold axis or 
mirror plane perpendicular to the c axis to exist, 
point groups 52 and 10m2 remain as possibilities. 
Fig. 20(b) exhibits symmetry 2mm. Mirror symmetry 
parallel to the c axis requires the existence of a 
mirror plane parallel to the axis. Since the mirror 
plane does not exist in point group 52 but does exist 
in 10m2, the point group of the alloy is determined 
to be 10m2. 

Examination of the usual diffraction patterns of 
the alloy revealed that the periodicity in the c direc- 

Fig. 18. CBED pattern of  a melt-quenched AlToNi~sFe~5 alloy 
taken from a 3 nm area at an incidence parallel to the decagonal 
axis. Note that the pattern shows fivefold rotation and mirror 
symmetry, total symmetry being denoted as 5m. 

tion is 0.4 nm and the lattice type is primitive; no 
dynamical extinction was observed. Then, the s__pace 
group of A170Ni~sFel5 was determined to be P10m2. 
This is the first quasicrystal with a noncentrosymme- 
tric space group. 

Quasicrystals of AlToNil0+xFe2o-x (0 <- x--- 10) 
were investigated by CBED and transmission elec- 
tron microscopy (Tanaka et al., 1993). It was found 
that the alloys with 0 ___ x ___ 7 belong to the noncen- 
trosymmetric space group P10m2 and those with 7 < 
x---10 to the centrosymmetric PlO/mmm. High- 
resolution electron-microscope images detected the 
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Fig. 19. Pentagonal and decagonal point groups constructed by 
analogy with trigonal and hexagonal point groups. 
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specific pentagonal atom cluster in all the alloys 
investigated. The change in space group takes place 
at x = 7.5 upon the sudden decrease of the domain 
size or the rapid mixing of the atom clusters with 
positive and negative polarities. Dark-field micros- 
copy of A17oNilsFe~5 alloys (Tsuda et al., 1992) 
revealed that there exist inversion domains and the 
domain boundaries accompany an antiphase shift of 
c/2. 

It must be specially mentioned that all the early 
discoveries on quasicrystals were performed by elec- 

(a) 

(b) 

Fig. 20. CBED pattern of  a melt-quenced AlToNi~sFe15 alloy taken 
from a 3 nm area at incidences (a) A and (b) B, which are 
perpendicular to the decagonal axis (c axis) and indicated in 
Fig. 18. (a) Mirror symmetry perpendicular to the c axis is seen, 
forming symmetry m. (b) Mirror symmetry both perpendicular 
and parallel to the c axis is seen, forming symmetry 2mm. 

tron microscopy with electron diffraction. A variety 
of space groups in quasicrystals is expected to be 
discovered in future studies. 

5. Crystal-structure determination 

The CBED method has the following advantages 
compared to the X-ray and neutron diffraction 
methods for crystal structure analysis. Firstly, the 
CBED method can be used to obtain diffraction 
patterns from a small specimen area that is a few nm 
in diameter. Then, it is possible to determine not 
only structures of perfect crystals but also local 
structures that change with position. Secondly, the 
CBED intensities possess information about the 
phases of structure factors because of strong 
dynamical diffraction effects. This fact contrasts 
strongly with X-ray and neutron cases, in which the 
kinematical diffraction theory is applicable and 
information about the phases is lost. Thirdly, the raw 
intensity data of the CBED pattern are of good 
enough quality to be compared directly to theoretical 
intensities and do not need many corrections, which 
have to be carefully made in the case of X-ray 
single-crystal structure analysis. 

Vincent et al. (1984) first applied the CBED 
method to the determination of the atom positions of 
AuGeAs. They estimated the experimental intensities 
of the HOLZ reflections recorded on negative films 
using their eyes. They determined the positional 
parameters by fitting the theoretical intensities calcu- 
lated under a quasikinematical approximation with 
the experimental ones. Vincent & Exelby (1990) 
applied the same method to the structure determina- 
tion of a metastable AI-Ge phase. Tanaka & Tsuda 
(1990, 1991) refined the structural parameters (the 
rotation angle of the octahedron and the Debye- 
Waller factor) of the low-temperature phase of 
SrTiO3, which is known to undergo a typical second- 
order phase transformation, on the basis of the 
dynamical theory of electron diffraction. Other 
attempts to refine positional or occupational param- 
eters have been made by Taft~ & Metzger (1985), 
Vincent & Bird (1986), Gjonnes, Boe & Gjonnes 
(1990) and Tomokiyo & Kuroiwa (1990). 

Recently, the automatic matching of experimental 
and theoretical CBED patterns has been challenged 
by the minimization of an R factor by a steepest- 
descent method (Marthinsen, H~ier & Bakken, 
1991), the simplex method (Zuo & Spence, 1991), the 
quasi-Newton method (Bird & Saunders, 1991) and 
the Marquardt method (Tanaka & Tsuda, 1991). 
Bird & Saunders (1992a,b) studied the sensitivity and 
accuracy of CBED pattern matching and tested an 
ab initio determination method of the structure fac- 
tors on the [1 I0] axis of GaP using simulated pat- 
terns as ideal experimental data. The refinement of 
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low-order crystal structure factors is described in the 
literature by Spence (1993). 

For quantitative study or structure determination 
by CBED, the most important points are: 

(i) High speed dynamical calculations. A calculation 
to obtain the intensity for a point of a CBED pattern 
needs to use more than 100 beams. For the fitting of 
the calculated CBED pattern with an experimental 
one, two-dimensional calculations at different 
incident-beam orientations in the kx and ky directions 
are needed with repetition of these until a good 
match is obtained. Such calculations have recently 
been carried out conveniently by a laboratory-use 
workstation at the cost of little more time than a 
supercomputer would need. To reduce computing 
time, however, the use of a low accelerating voltage 
of incident electrons and the application of the per- 
turbation method and the Bethe potential method to 
the calculation are still important. 

(ii) Accurate intensity recording. CBED patterns 
usually have a wide dynamic range in intensity. It is 
difficult to record the CBED intensities correctly 
with standard negative films owing to their nonlinear 
properties and narrow dynamic range. The use of a 
slow-scan charge-coupled device (Mochel & Mochel, 
1986; Mooney, Fan, Meyer, Truong & Krivanek, 
1990) or an imaging plate (Ichihara et al., 1984; 
Mori, Oikawa, Harada & Miyahara, 1990; Oikawa, 
Mori, Takano & Ohnishi, 1990) is necessary for the 
accurate recording of the intensity. 

(iii) Subtraction of inelastically scattered intensities. 
To obtain accurate experimental data to be com- 
pared with calculated intensities, inelastically scat- 
tered intensities should be subtracted. Tanaka & 

Tsuda (1991) demonstrated for silicon and FeS2 
using a sector-type energy filter how plasmon-loss 
intensities are harmful to the CBED patterns. It had 
been suggested that phonon scattering was worse 
than plasmon scattering because the former causes 
the interband transition, the latter the intraband 
transition; however, their experiment revealed that it 
is essential to remove plasmon scattering to decrease 
diffuse background and that phonon scattering 
appears to spoil the patterns very little. Recently, an 
electron microscope with an to energy filter to cut off 
plasmon-loss electrons has been developed (Mayer, 
Spence & Mrbus, 1991). 

a 

0 Sr 

- 0  . . . .  4 )  ... .  o o 

Fig. 21. Projection of the low-temperature form of  SrTiO3 along 
the c axis. The oxygen octahedron rotates an angle ~0 from that 
of  the high-temperature form. 

Fig. 22. [001] zone-axis CBED pattern taken at a temperature of 
85 K and an accelerating voltage of  84 kV. 
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Fig. 23. Calculated intensity profiles of the 1,14,1 FOLZ reflection 
as a function of rotation angle. 



284 CONVERGENT-BEAM ELECTRON DIFFRACTION 

It is shown here, for SrTiO3, that structure 
refinement can successfully be conducted by the 
CBED method (Tanaka & Tsuda, 1990). SrTiO3 
undergoes a second-order phase transformation at 
110 K from the high-temperature phase of Pm3m to 
the low-temperature phase of 14/mcm. The high- 
temperature phase has the cubic perovskite structure, 
in which an oxygen octahedron surrounds a Ti atom. 
In the low-temperature phase, the oxygen octahe- 
dron rotates slightly owing to the condensation of 
the R25 phonon mode (Fig. 21) of the high- 
temperature phsae. The positions of Sr and Ti atoms 
are considered unchanged. Therefore, structure 
analysis of the low-temperature phase implies deter- 
mination of the rotation angle ~o of the octahedron 
and the Debye-Waller factor B of the O atoms, 
where B is assumed to be isotropic. 

Fig. 22 shows a [001] zone-axis CBED pattern 
taken at 85 K and at an accelerating voltage of 
84 kV, exhibiting 4mm symmetry. The first-order 
Laue-zone (FOLZ) reflections appear only at the 
low-temperature phase or originate from the rotation 
of the oxygen octahedra. The reflections used were 

four FOLZ reflections (1,14,1, 3,14,1, 7,12,1 and 
9,10,1) and three second-order Laue-zone (SOLZ) 
reflections (5,19,2, 7,19,2 and 14,14,2), which are 
indicated by arrows. In the case of SOLZ reflections, 
only the outer peaks were used because these peaks 
were found to originate from the rotation of the 
oxygen octahedra from the analysis of the Bloch 
states formed by ZOLZ reflections. Fig. 23 shows the 
calculated intensity profiles of the 1,14,1 FOLZ 
reflection as a function of the rotation angle ~o, the 
calculation being carried out using 126 beams. It is 
seen that the intensity increases monotonically with 
the increase in q~ without changing the peak position. 
It was found that the intensities of the outer peaks of 
the SOLZ reflections decrease with increasing ~0. The 
accelerating voltage was determined in advance using 
a standard silicon specimen. The specimen thickness 
was determined by fitting the simulation patterns 
with the ZOLZ reflection pattern in Fig. 22. The 
HOLZ reflection intensities were calculated as func- 
tions of the rotation angle ~o and the Debye-Waller 
factor B. Fig. 24 shows the reliability factor R = 
Y glI~(obs.)- Ig(cal.)l/Ig(obs.), where the abscissa is 
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Fig. 24. Contour map of the reliability factor R, the abscissa and ordinate being the rotation angle and the Debye-Waller factor, 
respectively. 
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the rotation angle and the ordinate the Debye-  
Waller factor. The two parameters were determined 
to be q~ = 1.1 (2) ° and B = 0.325 (100)/~2 by fitting 
the experimental profiles with theoretical ones 
(Tsuda & Tanaka, 1994). Unoki  & Sakudo (1967) 
and Mfiller, Beringer & Waldner (1968) determined 
the rotation angle at 78 K as 1.4(1) and 1.25 ° , 
respectively, from electron-spin resonance experi- 
ments. Shirane & Yamada (1969) determined the 
angle to be 1.37 (35) ° at 78 K from neutron diffrac- 
tion. It is evident that the present result is consistent 
with these results when the temperature difference is 
considered. 

The result is sufficient to show that crystal struc- 
ture analysis by convergent-beam electron diffraction 
is feasible. This method is expected to lead to the 
development of  a new field of  nanometer-scale crys- 
tal structure refinement. Its application will extend to 
both perfect and imperfect crystals. 

Concluding remarks 

The convergent-beam electron diffraction method 
has been shown to be a very powerful technique to 
determine the symmetries of usual three-dimensional 
crystals and of higher-dimensional crystals. The 
method is developing further as a technique for 
determining crystal structures of nanometer-scale 
areas. 
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